Enantioselective Aggregation of Cobalt(III) Octahedrons in a One-Dimensional S-Bridged Co^{III}Ag^I Array That Leads to Spontaneous Resolution

Takumi Konno,* Keiji Tokuda, Ken-ichi Okamoto,[†] and Masakazu Hirotsu Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 [†]Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571

(Received August 25, 2000; CL-000796)

The reaction of $[Co(aet)(en)_2](NO_3)_2$ ($1(NO_3)_2$; aet = 2aminoethanethiolate; en = ethylenediamine) with AgNO₃ in water produced a novel S-bridged Co^{III}Ag^I chain complex-polymer, $[Ag\{Co(aet)(en)_2\}](NO_3)_3$ ($3(NO_3)_3$), by way of a Co^{III}Ag^ICo^{III} trinuclear complex, $[Ag\{Co(aet)(en)_2\}_2](NO_3)_5$ ($2(NO_3)_5$). The crystal structure of $3(NO_3)_3$, which crystallizes as a conglomerate, was determined by X-ray crystallography.

In 1979 Heeg et al. reported that the mono(thiolato)-type Co^{III} complexes, $[Co(aet)(en)_2]^{2+}$ (1) and $[Co(tga)(en)_2]^+$ (tga = mercaptoacetate), readily form 1:1 and 2:1 adducts with AgI or Hg^{II} in water.¹ Only the 2:1 adducts with Ag^I that were isolated as solid samples have been characterized to have an S-bridged $Co^{III}Ag^{I}Co^{III}$ trinuclear structure in $[Ag\{Co(aet or tga)(en)_2\}_2]^{5+or}$ ³⁺.^{1,2} No further reports concerning these adducts have appeared to date, despite intensive interest concerning the structures and chiral properties of S-bridged polynuclear complexes constructed by the aggregation of octahedral thiolato metal complexes.³ We, therefore, thought it worthwhile to reexamine this fundamental system, in order to find key factors to control the aggregation of thiolato complexes around metal ions. Here we report that the 1:1 adduct of [Co(aet)(en)₂](NO₃)₂ (1(NO₃)₂) and AgNO₃, which is obtained by way of the 2:1 adduct $[Ag{Co(aet)(en)_2}_2](NO_3)_5$ (2(NO₃)₅), does not take a Co^{III}Ag^I dinuclear structure but a onedimensional chain structure in $[Ag{Co(aet)(en)_2}](NO_3)_3$ $(3(NO_3)_3)$ in solid state (Scheme 1). The fascinating stereochemical behavior of 3, together with the significance of the counter anion for the aggregation of thiolato complexes around Ag^I ion is also reported.

Treatment of a dark-brown aqueous solution of $1(NO_3)_2^4$ with AgNO₃ in a ratio of 2:1 at room temperature gave a dark-red solution, from which a red crystalline powder ($2(NO_3)_5$ ·4H₂O) was isolated by adding an aqueous solution of NaNO₃.⁵ The ele-

mental and plasma emission analyses of this red product are in good agreement with the formula for an S-bridged Co^{III}Ag^ICo^{III} complex, [Ag{Co(aet)(en)_2}_2](NO_3)_5·4H_2O. The molecular structure of **2** was determined by X-ray analysis for its ClO₄⁻ salt,⁶ which was prepared by adding an aqueous solution of NaClO₄ to the aqueous solution of **2**(NO₃)₅·4H₂O.⁷ As pointed out by Heeg,¹ in **2** one Ag atom is coordinated by two S atoms from two octahedral [Co(aet)(en)₂]⁺ units to form an S-bridged Co^{III}Ag^ICo^{III} trinuclear structure. The S–Ag–S angle (164.50(8)°) is significantly deviated from 180°, which is inferred by three weak interactions between Ag¹ ion and ClO₄⁻ anions (Ag--O = 2.884(9) Å, 2.884(9) Å, and 3.01(1) Å). Considering the chiral configurations (Δ and Λ) for the two [Co(aet)(en)₂]²⁺ units, three isomers ($\Delta\Delta$, $\Lambda\Lambda$, and $\Delta\Lambda$) are possible for **2**. Crystal **2** consists of $\Delta\Delta$ and $\Lambda\Lambda$ isomers, which combine to form a racemic compound.

Figure 1. A perspective view for Λ -**3**(NO₃)₃ with the atomic labeling scheme. One of nitrate anions, which does not contact with Ag atom, besides H atoms, is omitted for clarity.

When an aqueous solution of $2(NO_3)_5$ was treated with ca. 1 molar equiv of AgNO₃ at room temperature, the first d–d absorption band at 20.33×10^3 cm⁻¹ characteristic for 2^5 shifted slightly to the lower energy side, from which a pink powder ($3(NO_3)_3$ ·H₂O) was isolated by adding an aqueous solution of NaNO₃.⁸ This product was also obtained directly from the 1:1 reaction of $1(NO_3)_2$ with AgNO₃ in water at room temperature. The plasma emission analysis indicated that **3** contains Co and Ag atoms in a ratio of 1:1, and the elemental analysis is consistent with the 1:1 stoichiometry of $[Co(aet)(en)_2](NO_3)_2$ ·AgNO₃·H₂O. X-ray analysis of a single crystal of $3(NO_3)_3$ ·H₂O,⁹ which was prepared by slow evaporation of an aqueous solution of the pink powder at room temperature, demonstrated that **3** is not a discrete S-bridged Co^{III}Ag^I dinuclear complex, but an unprecedented one-dimensional Co^{III}Ag^I chain complex-polymer. As shown in Figure 1, the S atom in each octahedral $[Co(aet)(en)_2]^{2+}$ unit is bound to two Ag^I ions to form a μ_3 -thiolato structure, such that the chain of $[Ag{Co(aet)(en)_2}]^{3+}$ zigzags in the direction parallel to the c axis having the S–Ag–S angle of $173.14(6)^{\circ}$. In **3** the Ag–S bond distances (2.546(2) Å and 2.532(2) Å) are considerably longer than the Ag-S distance (2.400(1) Å) observed in 2. Since the Co-S distance in 3 (2.287(2) Å) is similar to that in 2 (2.259(2) Å), the much longer Ag-S distances in 3 are ascribed mainly to the bonding interaction of NO₃⁻ anions with Ag^I ion (Ag--O = 2.657(6) Å, 2.725(7) Å, and 2.924(7) Å), which could diminish the electrophilicity of AgI atom toward the S atom in $[Co(aet)(en)_2]^{2+}$, rather than the coordination of μ_3 -thiolato S atoms in 3.10 Here it should be noted that in 3 the same configurational $[Co(aet)(en)_2]^{2+}$ units are linked by Ag^I ions to form a chiral Co^{III}Ag^I chain. Furthermore, **3**(NO₃)₃·H₂O is subject to spontaneous resolution to give a conglomerate,¹¹ which implies that one crystal of $3(NO_3)_3$ ·H₂O is composed of the same configurational Co^{III}Ag^I chains (Figure 2). For the crystal used for X-ray analysis, the absolute configuration for each $[Co(aet)(en)_2]^{2+}$ unit was determined to be Λ from the Flack parameters, which were calculated for each configuration.12

Figure 2. A perspective view for Λ -3(NO₃)₃ along the *a* direction, showing the packing of the chain units in the crystal. Nitrate anions, besides H atoms, are omitted for clarity.

In contrast to the 1:1 reaction of $2(NO_3)_5$ with AgNO₃, the corresponding 1:1 reaction using $2(CIO_4)_5$ and AgCIO₄ in water did not produce **3**; only $2(CIO_4)_5$ ·2H₂O was precipitated from the dark red reaction solution. This was also the case for the 1:1 reaction of $2(BF_4)_5$ with AgBF₄ in water.¹³ It is considered that neither CIO_4^- nor BF_4^- anion contacts with Ag^I ions as closely as does the NO_3^- anion, because of the non-planar geometry and the lower nucleophilic character. Thus, the chain structure in **3** is stabilized by the close contact of NO_3^- anions with Ag^I ion, which weakens the electrophilicity of Ag^I ion, so as to permit two Ag^I ions to bind to one thiolato S atom in $[Co(aet)(en)_2]^{2+}$.

In summary, it was demonstrated in this study that treatment of the mononuclear complex $1(NO_{3})_2$ with AgNO₃ gives an unexpected one-dimensional Co^{III}Ag^I chain complex-polymer 3(NO₂)₂, besides the S-bridged Co^{III}Ag^ICo^{III} trinuclear complex $2(NO_3)_5$. The chain structure in 3 was found to be stabilized by the close contact of NO₃⁻ anions with Ag^I ions, which diminishes the electrophilicity of AgI ion toward the thiolato S atom in $[Co(aet)(en)_2]^{2+}$. While **3** is no other than the aggregate of the mononuclear complex 1, 3 can be regarded as resulting from the aggregation of the S-bridged trinuclear complex 2 assisted by additional Ag^I ion. Thus, a variety of aggregates based on S-bridged polynuclear complexes could be constructed by controlling the nuleophilicity of μ_2 -thiolato S atoms and/or the electrophilicity of bridging metal ions. The chain structure in $3(NO_3)_3$ was found to isolate the chiral configurations (Δ and Λ) of $[Co(aet)(en)_2]^{2+}$, giving Δ -Co^{III}Ag^I and Λ -Co^{III}Ag^I enantiomeric chains, which separate from one another as homochiral crystals. Since the mononuclear complex Δ/Λ -1 and the trinuclear complex $\Delta\Delta/\Lambda\Lambda$ -2 are racemates, it is considered that the high organization of the octahedral mono(thiolato) Co^{III} units in a one-dimensional chain array leads to a rare example of spontaneous resolution.14

References and Notes

- 1 M. J. Heeg, R. C. Elder, and E. Deutsch, *Inorg. Chem.*, **18**, 2036 (1979).
- 2 M. J. Heeg, R. C. Elder, and E. Deutsch, *Inorg. Chem.*, **19**, 554 (1980).
- T. Konno and K. Okamoto, *Inorg. Chem.*, **36**, 1403 (1997); T. Konno, T. Machida, and K. Okamoto, *Bull. Chem. Soc. Jpn.*, **71**, 175 (1998); K. Okamoto, C. Sasaki, Y. Yamada, and T. Konno, *Bull. Chem. Soc. Jpn.*, **72**, 1685 (1999); K. Tokuda, K. Okamoto, and T. Konno, *Inorg. Chem.*, **39**, 333 (2000); T. Konno, M. Hattori, T. Yoshimura, and M. Hirotsu, *Chem. Lett.*, **2000**, 853.
- 4 L. E. Asher and E. Deutsch, *Inorg. Chem.*, **12**, 1774 (1973); D. L. Nosco and E. Deutsch, *Inorg. Synth.*, **21**, 19 (1982).
- 5 Yield: 93%. Anal. Calcd for $2(NO_3)_5$ 4H₂O: C, 14.41; H, 5.24; N, 21.00; Co, 11.78; Ag, 10.78%. Found: C, 14.49; H, 5.10; N, 21.08; Co, 11.71; Ag, 11.01%. Visible–UV spectrum in H₂O [σ_{max} , 10³ cm⁻¹ (log ϵ , mol⁻¹ dm³ cm⁻¹)]: 20.37 (2.48), 27.5 (2.8 sh), 35.19 (4.42).
- 6 Crystal Data for 2(ClO₄)₅·2H₂O: FW 1151.7, monoclinic, C2/c, a = 15.820(3) Å, b = 8.943(3) Å, c = 27.592(3) Å, $\beta = 97.16(1)^\circ$, V = 3873(1) Å³, Z = 4, $D_c = 1.98$ g cm⁻³, $R(R_w) = 0.051$ (0.053) for 3230 reflections with $I > 2.0\sigma(I)$.
- Yield: 86%. Anal. Calcd for 2(ClO₄)₅·2H₂O: C, 12.51; H,4.20; N,12.16%. Found: C, 12.44; H, 4.24; N, 12.08%.
 Anal. Calcd for 3(NO₃)₃·H₂O: C, 12.71; H, 4.27; N, 19.76; Co,
- 9 Crystal data for Λ -3(NO₃)₃:H₂O, FW 567.2, orthorhombic, P2₁2₁2₁, a = 13.852(2) Å, b = 15.746(1) Å, c = 8.135(2) Å, V = 1774.3(4) Å³, Z = 4, $D_c = 2.12$ g cm⁻³, $R(R_w) = 0.033$ (0.033) for 1902 reflections with $I > 2.0\sigma(I)$.
- 10 It has been shown that in [Ag₅{Rh(aet)₃}₄]⁵⁺ the averaged Ag–S(µ₃) bond distance is only ca. 0.05 Å longer than the averaged Ag–S(µ₂) distance, while there is a marked difference in the averaged Ag–S bond distances (ca. 0.14 Å) between the two-coordinated and three-coordinated Ag atoms. T. Konno and K. Okamoto, *Inorg. Chem.*, **36**, 1403 (1997).
- 11 Each crystal that was picked up from the bulk showed a positive or negative CD sign at 280 nm. Since the 1:1 reaction of Λ -1 with Ag⁺ gave ($-)_{280}^{CD}$ -3, it is reasonable to assign that the ($-)_{280}^{CD}$ and ($+)_{280}^{CD}$ isomers have the Λ and Δ -[Co(aet)(en)₂]²⁺structures, respectively.
- 12 H. D. Flack, Acta Crystallogr., Sect. A, **39**, 876 (1983); H. D. Flack and G. Bernandinello, Acta Crystallogr., Sect. A, **41**, 500 (1985). Flack parameters refined for the Λ and Δ structures give the values 0.07(6) and 0.93(6), respectively, suggesting that the former is the correct choice.
- 13 Anal. Calcd for 2(BF₄)₅·4H₂O: C, 12.82; H, 4.66; N, 12.46; Co, 10.48; Ag, 9.59%. Found: C, 12.68; H, 4.84; N, 12.22; Co, 10.72; Ag, 9.72%.
- 14 J. Jacques, A. Collet, and S. H. Wilen, in "Enantiomers, Racemates and Resolutions," John Wiley & Sons Ltd., New York (1981).